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Abstract — An efficient and effective method is proposed to search for all MPs in a aetwork {modified networks)
obtained by modifying the original network. This process can be used for reliability analysis of various
modifications in an existing network for network expansion or reinforcement evaluation and planning. Our method
is based upon the reformation of atll MPs in the original network. Without researching for all MPs in the modified
network, the proposed algorithm is more efficient and effective to implement. In this presentation, first we develop
an intuitive algorithm to search for all MPs in a modified network. Next the computational complexity of the
proposed algorithm is analyzed and compared with the existing methods. Finally, examples are illustrated to show
how all MPs are generated in a modified network based upon the reformation of all of the MPs in the

corresponding original network,

1L INTRODUCTION

In recent vears, in order to validate, verify the
designs and evaluate the performance, many real
world systems, such as computer and communication
systems [1,2,3], power transmission and distribution
systems [4.,5], transportation systems [0, 7], oil/gas
production system [7, 8] etc. are first modeled as
networks. Reliubility is then usually selected to be
one of the most important indexes of this network,

Ta evaluate reliability, all MCs or MPs of the
systern must be known in advance. However, both the
problems in locating all MCs/MPs and computing the
system reliability in terms of the known MCs/MPs
are NP-hard [4,5,9-251. There is generally a need to
evaluate only a few of the modifications in an

Texisting network for expansion or reinforcement
without focating all MPs or MCs.
In many cases, modification of an existing

_network | for network. expansion. or reinforcement

pianning is often necessary 123,24]. Such problems
have been posed and solved recently for MCs [23]
and MPs {24}, separately. Nevertheless, for-the MP
problem, the best known method proposed by {24]
was o straightforward  approach that  required
extensive comparison and verification. This method
failed to solve some special but important cases in a
moditied network. The need for a more efficient,
intaitive and generalized method to search for ail
MPs without an extensive research procedure thus
arose, The main purpose of this article is to present
an efficient method to search for all of the MPs in a
modified network. This proposed algorithm is very
effective and efficient when compared to the best
known method.

This paper is orgamized as foilows. Section 2
describes the notation, nomenclature and assumptions
required. Some lmportant lemmas and theorems are
discussed in Section 3. Section 4 discusses the best
known algorithm, then presents the proposed method
in detail. together with a discussion of the time
complexity and a comparison of the efficiency
between our method and the best-known algorithm.
Two illustrative examples are included in Section 5 to

show how to generate all of the MPs in 2 modified
network through our algorithm. Concluding remarks
are given in Section 6.

2. NOTATION, NOMEMNCLATURE AND

ASSUMPTIONS
Notation:
G(V. E): An original network with the set of
nodes V and the set of arcs £.
n, m, &: The number of nodes, arcs and MPs in
G (V, E), respectively,
s, 10 5, teVis the specified source node and
sink node, respectively.
lel: The number of elements of s,
_________ Tp(#): The path from node a tonode b ine.
B, © A branch string, ie. a path, which
connects node x to node v,
Pap: The set of all MPs which all pass
oo through node g but not-node b,

Fuopn: The set of ali MPs which all pass
through node a before passing through
node b, '

S@T: SQT=U STy}, if $2@ and T2,
where for all 5,5 and Te 7. Otherwise
S&T=0,

S®,T: 5@, T=S5@TRH8,,
G(V,: The modified network after inserting a
EyJB,, branch string B, in G(V, E}, where B,,m
GV, Ey={x, v}
Nomenclature

MP/MC: 1t is a path {cut) set such that if any arc is
removed from the set, then the remaining set is
no longer a path (cut) set.

Branch String: A branch string is a connected path
with at least two arcs between two original
network nodes, for example x and y {23,24]. All
nodes, except nodes x and y, contained in the
branch string are added with only two degrees.
For example, Byy={ey, €} 18 a branch string of
Fig 2 and is added into the network in Fig 1.
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Modified Network: A meodified network is an
updated network after inserting a branch string
between two nodes in the original network
[23,24). For example, Fig 2 is the modified
network of Fig | by adding By, i.e. Fig 1 i« the
original network of Fig 2.

Assumptions
The network must satisfy the following

assumptions {23,24]:

(1) Each node is perfectly reliable [5,25].

(2) The network graph is connected [25].

(3) There are no common-cause outages [20,21].

{4} There are no parallel branches.

(5) Degrees of all network nodes are at least Z,
except for the source node 5 and sink node 1.

3. PRELIMINARIES

A special property is considered first, which is
simply proved, discusses network modification by
open removal of branches as follows:
Theorem 1: Any MP p in G(V, E) 1s also a MP in the
modified aetwork after modifying G(V, E} by
removing a branch siring By, i and only if
pBome{x, ¥l

From Theorem |, the modifications to MPs are

~trivially. accounted. for..by. just discarding..the MPs..

assoctated with the removed branch [24]. Therefore,
inserting a branch string connecting two distinet
nodes wilt only focus on the modification of the

“roriginal - network by inserting T a branch - string

connecting two distinct nodes in the remainder of this
stucty.

Theorem 2: Any MP in G(V, E) is also an MP after
modifying G(V, E) by inserting a branch string
between two nodes,

From Theorem 2, to determine all new MPs after
inserting a branch string connecting two distinct
nodes is the key part of enumerating the MPs of a
modified network. Furthermore, all new MPg in
modified network are related to the MPs passing
through node x and/or y in G(V, E). Thus, all of the
MPs in G{V, E) that passed through node x and/or y
are separated into four disjoint subsets as in Lemma
l.

Lemma 1: All MPs that passed through node x
andfor node y is PapdPaUPUFP,.,,, and the
intersection of any two of Py, Py, Pey, and P, are
empty.

Proof: It is trivial.

The refationship between a new branch string and
any MP is discussed as follows.

Lemma 2: If MP p, passes node ¢ and MP p, passes
node & in G{V, E}JR,, individually, then B,
TC‘W([JI)Z{Q} and Buhﬁ'nh:(ﬁ'z):{b } .

Proof: All of the arcs in 8., are new to all of the arcs
in E. Therefore, this proof foliows.

Any MP, say p, can be separated into two paths
n{p) and n,(p), where node aep, ®.(p} is from
node s to node g, and 7, (p} is from node o to node 1.
Moreover, n,(p) passes (not) through node b, if and
only if pePy,., (pefPy,), and m,(p) passes {(not)
through node &, if and only if pel, ., (pePuy).
Greater detail 1s stated as follows,

Lemma 3: Let p be an MP. Then p=r, (p}om,(p), if
and only if © (), (pi={a}, where as V~{s, 1}.
Proof: If p=n (p)Jm,(p), i.e. passes node g, then it
is trivial that p can be separated into two paths T, {p)
and . {p) with m {p)m,(p)={a}, where ac V-{s,
t}. Suppose w (p)mlpi={a}, then p-[m.{p)
~mL(py] stili connects nodes s and ¢, e this
contradicts that p is an MP. This is concludes the
proof.

Theorem 3 1s a generalized of Lemma 3, and
plays an impostant role in the following theorems and
lemmas.

Theorem 3: Let p be an MP. Then p=mn,(p)
Ut pium,(p), 1f and only i nm(pywip)={al,
ﬂ.m({?)mﬂhr(P)"—”Q and ﬂab(P)mﬂbr{P)z{ b } .

A special situation of the subpaths of two MPs is

...... also.an MP.is dascribed as FollomiS e
Theorem 4: Let p and p” be two MPs and both pass

node «. Thep n‘,.,,(p)ua't(,f(p*) is an MP if and only if
TP dp y={a).

Proof: T p'=r, (pIm,(p") IS an MP, then 7,,(p"=

() and T (p")=n,(p"). From Lemma 3, m(pHin
TLph=la}, te. mu(p)m.(p)={a}. On the other
hand, 1t (p) and nm(p*) are two disjoint paths. The
former is from node 5 to node a in p and the rear is
from node a to node £ in p. Thus, TCA,.(,{p)UTCm(pﬂ:} is a
path from node s to aode ¢, if (P} {p )={al.

The following theorem is proposed first, without
the condition (P tPen)®d and (PaidP,on)?d in
[24] to find all of MPs in the modified network,
Theorem 3¢ If (PaJP_p)#@ and (P JP )=,
then the new generated MPs in G(V, EYUD,, are
[Tc.s'x{P x\.\'UP x—*}')®x_vny1(P }'\x‘UP .¥"->}‘)]U[Tc.\"\‘(1)‘ }‘\YUP )‘—»1)®)'x
er(P .z\yU‘D y—*x)lﬂ

Theorem 5 is a straightforward method but less
efficient because the intersections among MPs [24]
must be verified. In addition, this method also fails to
search for all new MPs in the modified network while
(PP )20 or {Py P )=, For example,
consider a special but practical problem of the
network in the following graph:
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No MPs pass node | in the original graph. But, after
inserting eys. {€,2, €23, €31, €14, €4} the new MP passes
node 1. Therefore. i without condition (P
P y#EE and (P JP,.;)2d, Theorem 5 is not true.
Hence, the best known algorithm proposed in [24]
works only under the condition of (P, UP,.»)=@ and
{Pb\,,uP(,.,,,;,);ﬁ@.

To overcome the shove two problems, some more
important rules are presented fo exploit the MP
structure.

Lemma 4: The following statements hold:

Rule b Pow=(Poa—P s I (P on P ap).

Rule 2: m, (SUT)=mr, (Srum (T).

Rule 3: n (SUN&, 1, IN=I7 {518, (U]
[ﬂm(’r)@uhnb:( U)] +

Rule 4: 7, (ST, (LAOW)=[1,(SYD a7t LD
I_TC_!-(, ( T) ®ubﬂ:b!( U)J U[TC.\-”(S)®(‘.,',TE;,1(W)]U[?C_W,(
;r')®uhﬂ:hr( W)! .

The formulation described in Theorem 35 is

rewritten as follows:

Thearem 6 : 70, (PP on) B Tt Pt AP o) ={1T,.(
..P,f.)j,“'P,NJ)®(,;,TC,I,;{P(,,,J;‘P],\(,)}U{E“,{Pu_;h”})a\,‘,)®”,IJTC},1(P
F::\a}]Ultﬂ.\‘u(PrN))®ui>nbz(Pu~>.’)—~Pb\aHUIR.vu(Pu\h)®ubnhr([)i)\
.

_ Proof: Since

ZTC.\‘U(Pafab""Pcl\h)unm(})u\b)s (TU[G 3}

And in the same way, we have

) 'Tc»:(1{Pt'r\f;kJ-F(}'ah):n.s(}(P'ct\'h'}Unx'a(Pr}?--’b_Pir\ﬁ)-' oy

Therefore, by rule 4, this concludes the proof,

The following theorem shows that if peP,.,, and
7, (p) is replaced 1n p by By, then this new path is an
MPin G(V, ExJB,,.

Theorem 7 : If p=n, (pyorn{piim,{p)e P, .. then
b I B (p) 1s an MP in G(V, EYUB,,.
Proof: If p=mn (p)oma(prom,(p) 1s an MP, then
AP M {p)=@ by Theorem 3. Besides,
B y={a} and  mp)nB,={b}. Hence,
7, P II B\ I (p) s an MP in GIV, E)UB,.

The theorems and lemmas in the remainder of this
section are presented to simplify in order the
formulation in Theorem 7.

Lemma 5 : Let py and py be two MPs in G(V, E). I
TE.\(;(Pi}E TE.,-“(P(,...,,',), K[Jf(FQ)EchI(Pu-—-b)! and R.m(pi)m
nhf(pl):gv then either nm(Pi)Unub(Pz)U“hr(P;’)E Pu#h
or nb:(p?.}e ﬂ,l,r(P[,\”).

Proof: Since n‘ru(pl}ﬁnblujl):@? it Tc,\‘d(pi}mnab(p?.)
"—“{{l}, then ﬂ.\u(pi)unnh(pl)unbr{p?,)ePa—>b (fi‘(}{l’]
Theorem 3). Otherwise, there is a node o (#a)} in

Em(ﬁl}mﬁﬁhﬁﬁ?_)» SUCh {h'rl{ Tf‘ra(Pl)mﬂw(Pz)n{ﬂ} and
el P P2 N P2IE€ Py 1.8, P2 (P,

Lemma 6 : If pe Py, p € Py, and R (pyrm,(p =3,
then E.!‘u(P}URIJI(pw}UBnhE R.\'n(Pa—n'))®ubﬂhr(Pb\u)-
Furthermore, if (D)€ Ry (Paw), then 7,(p)m ()
=0, Mol DI PIITap Y€ P TP IE TP,
and %, (P)T(p PMOBusE T PP )BT Pi)-

Proof: If peP, s pePu, and m,(p)mmup )=,
then directly from the definition of MP, we have
T PRI P R IB € Toaal P YT Prva). Next, since
e POyl p )=, T pINTa(p)=lal, if
TPy vrg(p ) #{b}, then there 13 a node ¢ (#b)

—fsa,,(p)mnb,(p*) such that m,(pyum.(p} is a path from

node ¢ to node ¢, and n_,.,,(p)un(,(.(p)um-z(Py)eP[,\,,_
Therefore, if ol ) Z M (Fosh then
Rl 2)ep V= (bY . IF () Tp y=( b)), then it is
obviously (P IIT (P th,(p*)e | and
nm(P)UTCj,;(P*)UB”hE n.\'ﬂ(P(l—'h_PHV>) ®c{hnb{(Pa—>thb\r:)-
Hence, the theorem follows.

In the same way Lemma 6 s proven. Lemma 7
follows immediately.
Lemma 7 : If pe Py p € Py, and 7ty,(p dmp{p)=3,
then Rl W) IBusE T P e P
Besides, if my{p)e mp(Pry), then m(p 3w (p)=E,
n.vn(P*)UTfab(P)Uﬁm(P)G Pu--»hz n.\‘rr(P*)e Ttm(Pu\h)s and
n.\‘rf(p*)Unab(p)UBube ﬂm(Pu\b)®nhnhr(Pn—'b"Pb\a}v

The following theorem is a simphified form of
Theorems 6 and 7. This theorem provides the basis

RS GUE &ilgt}f’itnﬂ] and s general;zeﬂ""iﬁ' the néxe

theorem.
Theorem 8: If PP, p2E and Py P, 20, then

'n.ta(Pa\.’JUPﬂ-Ab)®ﬁf;nhr(Ph\nUPu—>b):[Ui{n.vrf(fji)unhr(Pi)'U“

B} 11 P i) Bt Prog)], where for all pe P,
with TC‘;(,{_[J,‘\)EE P, o1 ?"C,',I([J,‘)E Fra.

Proof: ' Since
F 0 P RVAN SR N A € o VN SN o O § S ST LSS A
(PP o PP i )BT P

T P o) B Tl P o= P e NI P ) B T P )
gl Lont=P i) B i Tope PP i} o P )BTl Py
el Tl PO PN B o P P 3 T P i),
Rk Bt ) DupTon (P i) SN T (P IITU AP RSB |
and Ty
(P d® T £y Lo S T (p i (i B 1, we
have

el Pt TPt BT PP )l mo{phompd pii
Bep IR P o) Bop T P 3.

Besides, i pelu{npom(priBsl] or
PEITPas) ®ultnPra}, then py is a new MP.
Hence, B dps)
T P B} 1A T P )R P ST (Popt i
YD ap Tl P iPonp). Thus, Ty (PP s )8 T (Pt
P U e PN P I B WA Rl P o) DT P
.
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The following theorem is the criteria implemented

in our algorithm for building the associated MPs of

the modified network. It is very simple but more
efficient than the other best known algorithm for
generating new MPs In a modified network. Our
algorithm has none of the limitations listed in
Theorem 9.

Theorem 9: If (P, WP )=, then let node x to be
node X. Otherwise, there is a path p, from node 5 to
node x {or from node x to node 7} with node Xep,
such that there 15 a path from node s to node X to
node . If (P, 0P, =0, then let node y to be node ¥.
Otherwise, there is a path p, from node s to node y (or
from node y to node £) with node Ye p, such that there
is a path from node 5 to node ¥ 1o node 1. Let Byy=8,,
if Xe=x and Y_. otherwise By={p: p \JB)n where for
all paths p from node X to node ¥, and Bpe=B,, if
Xe=x and Y=v, otherwise Byy={p: p UBD, where for all
paths p~ from node ¥ to node X. Then the set of alf
new MPs, after inserting B,, into G(V, E) are

LIV (P (p) F O By J [T (P Oy Py Y@ Byy

S e dp Tt () VBB Ml P BT Pony) ®
Byxl, where V' peP.., with m{p)ePy or
T(pdE P, ¥V pePy,. with wulp)ePy, or
n,\'f{p, [.)E P Eati

Proof:  Follows directly from Theorem 31,

4. THE PROPOSED ALGORITHM

To compare our algorithm to the best-known
method presented in {241, the calculation procedure
of the best-known  method
transforming it into cur notatians‘
Algorithim 0:
STEP 1:

STEP 2 : New set of MPs generated from P,,,, P aw
and P, are Tl P (P )81, (P 0P ). '
STEP 3 : New set of MPs generated from P, Py,
and £ Yy A€ Tc.\;\'(P _\‘A.rup y\()®yxnxz{P y—>,rUP x\y)-

STEP 4 : All MPs in G{V, ) and New MPs that
generated from STEPs 2 and 3 are all of the MPs in
GV, Ey By,

in the above procedure, this algorithm faiis to find
new MPs, while there are no MPs from node 5 to
node ¢ passing through node x or node y (see the
example in Section 3).

Next, our algorithm (Algorithm 1) that based on

Theorem 9 will be proposed to enumerate of atl MPs
after inserting a branch string to a network,
Algorithm 1:
STEP 1 : If there is a path from node 5 to node 1
threugh node x, then Xex and go to STEP 3
Otherwise, find a shortest path from node 5 to node x
(if it does not exist, then find a shortest path from
node x to node f instead). Let node X be the node
nearest to node x in this shortest path such that there
15 a path from node s to node ¢ through node X.

s..disted.. first . by.

Separate ali MPs that pasq node X an{i/{)r
~nodey into Py P Py or Pioyr '

STEP 2 : If there is a path from node 5 to node ¢
through node v, then Y+v and go to STEP 3.
Otherwise, find a shortest path from nede 5 o node v
(if it does not exist, then find a shortest path from
node ¥ to node ¢ instead). Let node ¥ be the node
nearest to node y in this shortest path such that there
is a path from node s to node 1 through node V.

STEP 3 : Find Pyy Pry, Py and Pyy using the
definition in Section 2,

STEP 4 : Find [U{nx(p)my(p) } @By V[ me(p)®
Ry (pi) 1@Byy], where for all pig Py_y, mp)e Pey or
P3¢ Pux. and Byy=B,, if X=x and ¥=y, otherwise
Byy={p: p*qu_\., where for alt path p* from node X to
node ¥.

STEP 5 : Find {U,{rc,\,x(pf)uny,(p,-)}@Byx}u[{n_‘.y(pf)@@
Tk p,) }®Byxl, where for all pe Pyy, Tl ple Py or
Tlp)e Pm, and Byy=8,, if X=x ar:d Y=y, otherwise
By={p p UBA_,, where for all path p from node Y to
node X,

STEP 6 : All MPs in G(V, E) and new MPs that
generated from STEPs 4 and 3 are all of the MPs in
G(V, E)ZJB,,.

Theorem 14 : The above algorithm jocates all of the
MPs in a modified network, if the MPs are all known
in the corresponding original network in advance,
Preof: Follows directly from Theorem 9.

Theorem 11 : Algorithm 1 is more efficient and
effective than Algarithm 0.
Proof: Since Algorithm 0O works only under

(Pt\}UP(_",‘}#@ . aﬂ.d - (Pya;UPg‘u}i@, Th@re T

limitations for Algorithm 1. Algorithm | is more
effective than Algorithm 0.

B T T (Pl\‘uP‘_“);ﬁ@ Lmd(Pan e

Py =@, the major time complexity in finding new
MPs for Algorithms O and | are from- T Pro\
P x\y}®xyn}‘r(P xA}'UP v\,r) and TC_,-}.(P .\'—vaP )‘\,[}®)'.\'R.YI(P yorct
Py, and R (P 't T (P ) and Rl P )@y Tl P )
respectively. Therefore, it is trivial that the major
time  complexity of (P )@ Rl Pry) and
T APwd®y  T{Pu) is simpler than that of
T PP 080 T P\ P and
n.\‘_)‘(P _v—UcUP y\x)®,\jnxi(fp yoaxit P x\_\')~

5. EXAMPLES
The following example, which is originaily

from [24], illustrates our algorithm for the MP
problem in a modified network under the condition
that (PP, )20 and (PP )7,
HExample 1: Consider the aetwork in Fig. 2 , which
was modified by inserting a branch string {e, en)
into the exampie network in Fig. 1. If nodes s and ¢
are the source and sink nodes, respectively, then ali
of the MPs in Fig. | are as follows:

prlen e, ead, pre{e, e, 3, €3}

pi=te, e, €, 23], pe={ey e, eg, ex, e4, )
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Ps={e, e, ey ), pemlen. en, e, ey,

pr=len ean. e end, pe=len, ean, e, €34, €3,).

Use Algorithm 1 to find all of the MPs in the
modified network shown in Fig. 2.

Solution : According to the definition, classify all
MPs into the following groups: Pus={pi, ps},
Pyu={ps. peb. Proa=ipa, ps. ps pst and P, =,

Since there is a path from node 5 to node ¢ through
nade v and node y, respectively, and 71, {Pry)={{e,},
{ea. eat) mdPrar=l{en, eul] malPrd={{em enll,
T Prd=ttent, lesn enl), malPra={{ea), {ew
exn 1l Tad Proa)=l{ ey, {eas €3, and
TPy )= Py =2, We have
T (Prad®@ama(Prd={ ey, exn i3}, {ea. en, a3 €13},
{ea, e e enl. €2 e, 2 em 3}3}} and
Tl Py )& Pra)={{en, e, €14 24 €3},

Besides, [Ui{m(proms{pdoB = na(ppum,,
(PIVB, =, where for all pelPis ma(p)e P,
T(pe Py and pe Pyy. Therefore, the set of all
MPs in Fig. 2 s {1, P2 Pa, Pa Pss Pes P P 12000 @300
et len, e e el {2 ean ean €3}, Lo, ear, e,

€3 €13}, 1 €00 €230 €1 €up, 631}]-

In the next example, we wiil show how Algorithm
b works if Po WP = and/or P juP =2,
Example 2: Consider the example network in Fig. 3,
if nodes s and r are the source and sink nodes,
respectively, and all of the MPs in Fig. 3 are as
foitows: pi={en, e, ex}, pr=leq. en, e, ey). Use

Algorithm I to find all MPs in the modified network,

~which was modified by inserting a branch string

{em).
Solution :

_BTEP 1 : Since there is no path from node. s.to node.z ..

through node |, and the nearest node to node 1 in the
shortest path from node 5 to node | {e,s, €13, €34, 241)
is node 4.

STEP 2 : Since there is a path from node s to node ¢
through node 3, let Ye-3.

STEP 3 : By the definition in Section 2, we have Pyy
={pl Prx=lpal, ParsPro=@, Par={pi},
Pyoy={p2}, and Pyy=Py = PIX:{{EW}: {eis ESX”
LTEP 4 : Since
ol Pant =T (P 3= (Paos)=10{ Pasg) =,
TalPra)={len. el mdPr={{en}], ma(Pig=
{lea, ext], and mdPia)={{ex}}). Thus, m,(Pu)®
T Pa)=@, and {{T(prumu(py), B (P medp)}®
But=[{en, e, ea)®l{ew el les e enll=
{Hew e, e e gl lea en e s, esq eq)),
where x(p)é Poy. Tp(p)e Pry, and Byy={{es, es,
931}}-

STEP 5 : We have [Udra(piumy(p) @B U {m,y
(PO (p) } OBy i=ld,  where  for all pE Py,
Tk pig Pry and xdpj}E Pyy, and BYX=[{€15, €54,

C’ﬂ}f-

STEP 6 : The set of ali MPs after inserting branch
string {13} in Fig. 3 is p1={eq, en, ey, pr={eq, en,
i €qrls (e, ean, €31, e, €4} and [eq, ea, e 45,
€54 Cayr}.

6. CONCLUSIONS

Network reliability theory has been applied
extensively in many real-world systems. Thus,
system reliability plays important roles in our modern
society [8]. The reliability evaluation of a network is
Nf-hard but practical [4,59-19]. Most of these
methods are formulated in terms of either MCs or
MPs [9-14]. However, to search for all MCs or MPg
is also a NP-hard problem [9-14], Moreover, it is a

‘very cumbersome and time-consuming task if all of

the MPs in the modified network must be sought .

The existing approaches for the enumeration of
MPs in modified networks are practical but tedious.
Basically, these systems locate all new MPs in a
straightforward enumeration procedure that works
only under some special cases. Therefore, the main
purpose of this article is to present a more efficient
and effective algorithm to solve such a problem.

By exploiting the MP structure in the original
network, the proposed algorithm not only requires
fewer calculations to generate new MPs in the
modified network, but is also more effective in every
situation in the modified network. Hence, our method
is very effective and efficient when compared to the
existing methods,
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